GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

COURSE CURRICULUM

Course Title: ELECTRICAL POWER GENERATION (Code: 3330904)

Diploma Programme in which this course is offered	Semester in which offered
Electrical Engineering	Third Semester

1. RATIONALE:

The various power plants need highly skilled technicians who are capable of operating various control equipment in normal and abnormal conditions. Efforts are made to develop essential skills like operate, maintain and troubleshoot various equipment in different power plants. Also, the skills to observe safety can be developed in the students by this course while handling electrical system.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency.

• Maintain and troubleshoot different equipment used in various power plants.

Tea	ching So	cheme	Total Credits	al Credits Examination Scheme		cheme						
	(In Hou	rs)	(L+T+P)	Theory Marks		Theory Marks		Theory Marks		Practical	Marks	Total Marks
L	Т	Р	С	ESE	PA	ESE	PA	150				
04	02	00	06	70	30	20	30	130				

3. TEACHING AND EXAMINATION SCHEME

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P - Practical; C - Credit; ESE - End Semester Examination; PA - Progressive Assessment

Note: It is the responsibility of the institute heads that marks for PA of theory & ESE and PA of practical for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

4. COURSE DETAILS

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – I	1a.Explain thermal energy	1.1 Energy conversion process for thermal
Thermal Power	conversion process with	power station with plant layout
Station	block diagrams	1.2 Selection criteria for site of thermal
	1b.Identify the appropriate site	power station
	1c. Describe the working of	1.3 Line diagram of thermal power station;
	thermal power station	Different cycles of thermal power
		station
		1.4 Major equipment and auxiliaries of
	1d. Explain the importance of	thermal power station

Unit	Major Learning Outcomes	Topics and Sub-topics
	load curve and load	1.5 Load curve and load duration curve
	1e. Differentiate between base	plant
	load and peak load power plants. 1f. Name the major TPS in	1.7 Base load and peak load stations
	Gujarat	1.8 Coal based thermal power stations in Gujarat
Unit – II Hydro Power Station	 2a. Explain hydro energy conversion process with block diagrams 2b. Identify the appropriate site 2c. Classify the different types of HPS 2d. Name the major HPS in Gujarat 	 2.1 Energy conversion process for hydropower station (HPS) with plant layout 2.2 Selection of site for HPS 2.3 Classification of HPS: based on head, Storage and pondage type, Plant Layout, types of water turbines 2.4 Auxiliaries of HPS 2.5 Major features of HPS 2.6 Hydro power stations in Gujarat
Unit – III Nuclear Power Station	3a. Explain energy conversion process with block diagrams3b. Identify the appropriate site	3.1 Energy conversion process for NPS:Nuclear fusion and fission, Chain reaction3.2 Selection of site for NPS
	 3c. Explain the working of Nuclear power station 3d. Describe various types of reactors 3e. State special precautions required for NPS 3f. Name the major TPS in Gujarat 	3.3 Special precautions for NPS3.4Advantages and disadvantage of NPS3.5 Name the nuclear power stations inGujarat
Unit – IV Solar Power Plant	 4a. Explain the various solar energy parameters required for electrical power generation 4b.Describe measurement of solar radiations 	 a. Solar constants, Measurement of solar radiations 4.2 Solar Energy Conversion
	 4c.Describe the working of Solar concentrated solar power (CSP) systems 4d. Explain principle of solar photovoltaic systems 4e. Classify different solar PV 	4.3 CSP generators, construction and working principle4.4 construction of a solar PV systems: Solar cell, Module, Panel and array
	 system. 4f. Explain the issues of grid connection of solar power plants 4g. Name the more than 1 MW solar power plants in Gujarat 	 4.5 Types of solar PV system Stand –Alone Solar PV system Grid-Interactive solar PV system 4.6 Grid connection issues of solar power plants 4.7 Solar power plants in Gujarat

Unit	Major Learning Outcomes	Topics and Sub-topics
Unit – V	5a. Describe the function of	5.1 Anemometer and wind vane
Wind Power Plant	anemometer and wind vane	
	5b.Describe the significance of	
	the wind speed and the	5.2 Site selection, wind speed, wind
	power derived from the	direction
	wind.	and its relationship with wind power
	5c. With the sketches describe	
	the different types of wind	
	turbines.	5.3 Wind turbine types and their
	5d.Explain the drag and lift	construction
	principle of rotation of the	
	wind turbine rotor.	
	5e. With sketches describe the	5.4 Drag and lift principle of rotation of the
	construction of a typical	wind turbine rotor.
	geared, direct drive and	
	hybrid large WPPs.	5.5 Geared WPPs, direct drive WPPs and
	5f. Describe the principles of	Hybrid WPPs
	different types of	
	aerodynamic controls of	
	WPPs.	5.6 Stall control, pitch control and active
	Sg. with single line diagram	stall control of wPPs.
	explain the reasons for	5.7. Somignal as as Industion Conservations(IC)
	types of electrical	5.7 Squiffel cage induction Generators(IG),
	types of electrical	would fotor IG, doubly led IG,
	generators used in Targe	5.0 Dermonent magnet supebronous
	5h Describe the various	generator
	components of the direct	5 10 Direct-drive and geared small wind
	drive and geared small	turbines
	wind turbine	5 10 Major wind farms in Gujarat
	5 Name the major wind farms	5.10 Major which family in Oujarat.
	in Gujarat	
Unit – VI	6a. Explain the concept for	6.1 Single line diagram, energy conversion
Captive power	captive power plants	process, advantages, disadvantages and
plant and other	6b. Classify Gas based power	limitations of DG sets
renewable energy	generation systems	6.2 Single line diagram, energy conversion
sources	6c. With line diagrams	process, advantages, disadvantages and
	describe the principle of	limitations of Gas based power plants
	biomass electrical energy	6.3 Biomass electrical energy conversion
	conversion systems.	process.
	6d. With line diagrams	6.3 Ocean energy electrical conversion
	describe the principle of	systems
	ocean energy electrical	
	conversion systems	6.4 Geothermal electrical energy conversion
	6e. With line diagrams	systems
	describe the principle of	
	geothermal electrical	
	energy conversion systems	

Unit	Unit Title		Distribution of Theory Marks			
		Teaching	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Thermal Power Station	12	06	04	02	14
II	Hydro Power Station	06	05	03	02	10
III	Nuclear Power Station	08	05	03	02	14
IV	Solar Power Plant	08	02	03	05	08
V	Wind Power Plant	08	02	02	06	10
VI	Captive power plant and	08	05	02	03	14
	other renewable energy					
	sources					
Tot	tal	56	27	26	17	70

5. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY)

Legends: R = Remember; U = Understand; A = Apply and above levels (Bloom's revised taxonomy)

Note: This specification table shall be treated as only general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

6. SUGGESTED LIST OF EXERCISES/PRACTICAL

The tutorials should be properly designed and implemented with an attempt to develop different types of skill leading to the achievement of above mentioned competency

S.	Unit	Practical/Exercise	Apprx. Hrs.
No.	No.		Required
1	Ι	Interpret the line diagram of Thermal Power Station (T.P.S.)	02
		and main cycles & explain working of T. P. S.	
2	Ι	Prepare technical report of visit to a nearby T.P.S.	04
3	Ι	Collect the data from nearest power station for load curve	02
		preparation and interpret it.	
4	Π	Prepare technical report of visit to a nearby H.P.S.	04
5	III	Interpret the schematic diagram of Nuclear power station &	02
		explain the function of each component.	
6	IV	Prepare technical report of visit to a nearby Solar PV station.	04
7	V	Prepare technical report of visit to a nearby Wind farm.	04
8	V	Assemble/dismantle direct drive small wind turbine	02
9	V	Assemble/dismantle geared small wind turbine	02
10	VI	Interpret and interpret schematic diagram of Diesel Power	02
		Station	
11	VI	Prepare technical report of visit to a nearby Diesel Power	04
		Station.	
12	VI	Interpret and interpret schematic diagram of gas based power	02

S. No.	Unit No.	Practical/Exercise	Apprx. Hrs. Required
		plant	
13	-	Collect data of generating capacity of conventional & non conventional power plants in India. (Total generation of India and Gujarat)	02
		Total	32

7. SUGGESTED LIST OF STUDENT ACTIVITIES

- i. Assignment on solving tutorial
- ii. Visit to nearby Thermal power station
- iii. Visit to nearby Hydro power station
- iv. Visit to nearby Solar PV station
- v. Visit to nearby Wind farm.
- vi. Visit to nearby diesel power plant.
- vii. Collect data of generation for India and Gujarat

8. SUGGESTED LEARNING RESOURCES

(A) List of Books:

S. No	Title of Books	Author	Publication
1	Electrical Power system	Mehta, V.K.	S. Chand and company, New Delhi, 2011
2	Electrical Power	Uppal, S.L.	Khanna publication, New Delhi, 2011
3	Wind Power Plants and Project Development	Earnest, Joshua and Wizelius, Tore	PHI Learning, New Delhi, 2011
4	Renewable Energy Technologies – A Practical Guide for Beginners	Solanki, Chetan Singh	PHI Learning, New Delhi, 2011
5	Power plant Engineering	Nag, P K	Tata McGraw Hill, New Delhi, 2011
6	Non conventional energy sources	Rai, G.D.	Khanna publication, New Delhi, 2011
7	Generation and Utilization of Electrical Energy	S. Sivanagaraju	Pearson, New Delhi, 2011.

B. List of Major Equipment/Materials with broad specifications

- i. 5 kW Solar PV system
- ii. 2 kW concentrated solar power (CSP) system
- iii. 2 kW DG system
- iv. 1 kW direct drive small wind turbines
- v. 5 kW geared small wind turbine
- vi. Illustrative charts for TPS
- vii. Illustrative charts for HPS

- viii. Illustrative charts for NPS
 - ix. Illustrative charts for gas based plants

C List of Software/Learning Websites

- i. www.energyshouldbe.org/
- ii. www.power-genindia.com/
- iii. www.indiastat.com

9. INSTRUCTIONAL STRATEGIES

- i. Power point presentation
- ii. Overhead projector
- iii. Visit to nearby power station
- iv. Visit to wind farms
- v. Solving the tutorials
- vi. Display of video films on working of different type of power stations.

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Faculty Members from Polytechnics

- Smt. A. A. Amin, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Vadnagar.
- Shri B. R. Shrotriya, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Ahmedabad.
- Shri N.N.Pandya, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Ahmedabad.
- Shri V. C. Jagani, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Junagadh.
- Shri. J.K.Rathod, HOD, Electrical Engineering Department, TFG Polytechnic, Adipur, Gujarat
- Shri K. V. Dave, Sr. Lecturer, Electrical Engineering Department, Govt. Polytechnic, Rajkot

Coordinator and Faculty Members from NITTTR Bhopal